
 

 

  
Abstract—As recently newly techniques, Group based Sparse 

Representation (GSR) algorithms were proposed, which achieved an 
excellent performance of sparse representation, exploiting the 
concept of group as the basic unit of sparse representation which is 
composed of nonlocal image patches with similar structures and 
capturing intrinsic local sparsity and nonlocal self-similarity of 
images simultaneously in one unified framework. Inspired by this, we 
apply GSR to single image super resolution reconstruction. However, 
the Euclidean distance metric applied in the process of group 
construction in traditional GSR failed to capture nonlinear structural 
information between image patches, leading to that the performances 
of these algorithms were sensitive to the geometric structure of 
images. In order to solve the problem, on basic of existing GSR, the 
nonlinear nonlocal self-similarity and local information of image 
patches were captured by exploiting effectively Gaussian kernel 
distance metric instead of the Euclidean distance metric in the paper. 
The paper presents Single-image Super Resolution based on Group 
Sparse Representation via GAUSSIAN (GSRGSiSR) algorithm. 
Compared with many state-of-art SISR methods, extensive 
experimental results validate that the proposed method can obtain 
better peak signal-to-noise ratio (PSNR) and structural similarity 
(SSIM). 
 

Keywords—single-image super resolution, group sparse 
representation, similar structures, Gaussian kernel distance, nonlocal 
nonlinear self-similarity.  

I. INTRODUCTION 
igh resolution (HR) images are used in many practical 
applications, such as medical image analysis, computer 

vision, remote sensing, and so on. HR images can be obtained 
by single image super-resolution (SISR) methods which 
obtained the corresponding high resolution image of the low 
resolution (LR) image through an operation from a single low 
resolution (LR) image. 

Single image super resolution method can be divided into 
three categories: the interpolation based methods [1], the 
reconstruction based methods [2] and the example based 
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methods [3]. Although the interpolation based methods are 
simple to perform, the reconstructed HR images are often 
blurred with jagged artifacts and ringing phenomenon. The 
reconstruction based methods introduced some prior 
knowledge during the reconstruction process, but the 
reconstructed HR images had excessive smoothing 
phenomenon or been lack of some important details, the blur 
effect was more obvious in the amplification of the 
reconstructed HR image, it may lose the real vision of images. 
The essence of the example based methods is to assume that 
the high frequency details lost in LR images can be obtained 
by studying the relationship between the LR image blocks and 
the corresponding HR image blocks, and the reconstructed HR 
image can keep the sharpness of the image expanding the size 
of the reconstructed HR image, so that they have become a hot 
research topic. However, the effect of these methods is mainly 
dependent on one large image database [4]. Recently, in order 
to solve this problem, Yang et al. [4] proposed a sparse 
representation based super resolution method(SCSR), which 
consisted of two stages: coding and linear combination. 

The sparse model assumes that each image block can be 
represented sparsely by several elements in the dictionary, 
which are derived from the natural image. At present, there are 
two main problems in the sparse representation model based 
on image blocks [5]. First, dictionary learning is one 
large-scale and highly non-convex problem, and the 
computational complexity is high [6]. Secondly, the image 
block is one unit of sparse representation, and each image 
block is usually considered independently in dictionary 
learning and sparse coding process, ignoring the relationship 
between similar image blocks in essence, such as 
self-similarity [7]. In addition, according to the dictionary set, 
the relatively expensive nonlinear estimation method is 
generally used for calculating the sparse representation 
coefficient of image block, such as match pursuits [8], which 
may be unstable and inaccurate due to the coherence of the 
dictionary [8].  

For the above shortcomings of sparse image block based 
natural image model, Zhang et al. [5] proposed group based 
sparse representation (GSR) model classifying similar local 
structure of image blocks as one group, which is the unit of 
sparse representation. In order to classify similar image blocks 
into one group, Zhang et al. [5] used Euclidean distance to 
measure the similarity between image blocks. 

Compared with manifold distance, Euclidean distance 
metric is low computational complexity, but it cannot well 
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reflect non-linear relationship between image blocks. Based 
on above analysis, this paper proposes group sparse 
representation based single image super-resolution algorithm 
via Gauss metric on the basis of the existing group sparse 
representation(GSR). In order to measure better the distance or 
similar between image blocks, the algorithm uses Gauss kernel 
distance to obtain nonlinear information between image blocks, 
making full use of the natural image space geometry to 
capture effectively local similarities and differences between 
image blocks. Experiments on FRGC Ver1.0 natural image 
sets show that the proposed algorithm has better robustness 
and super-resolution performance in both PSNR and visual 
perception. 

The remainder of this paper is organized as follows. Single 
image super-resolution, traditional patch-based sparse 
representation and traditional patch-based sparse 
representation based single image super-resolution are 
introduced in Section II. Section III proposes single image 
super-resolution of group-based sparse representation (GSR) 
modeling. Extensive experimental results are reported in 
Section IV. In Section V, we summarize this paper. 

II. RELATED WORK 

A. Single image Super-resolution 
The task of single image super-resolution is to restore one 

HR image from one input LR image through an operation. 
Given an observed image , the model of image super 
resolution is defined as: 

                  (1) 

Where the degradation matrix is a composite operator of 
blurring and down-sampling, is the original image, and  
is the noise term. In past decades, researchers have proposed a 
lot of single image super-resolution algorithms.Due to the 
ill-posed nature of the super-resolution inverse problem, the 
regularization method is introduced to eliminate uncertainty of 
image restoration. A lot of regularization based several 
techniques have been proposed in recent literatures[5,9,10]. 
Typical regularization models include total variation (TV) 
regularization[9], non-local similarity[10] and sparse 
regularization term [5]. Total variation (TV) regularization is 
introduced in image processing, and applied successfully to 
the solution of inverse problem. Due to TV regularization 
assuming the piecewise constant region, TV regularization[9] 
is more suitable for super resolution reconstruction of smooth 
images. 

In order to restore the discontinuity or spatially 
inhomogeneous images, researchers propose sparse 
regularization, which is applied to super resolution image 
reconstruction[4]. For one LR image , let and 

denote respectively HR image and reconstructed HR 
image. Accordingly, ， ， ( ) 
represent respectively LR, HR and reconstructed HR image 
blocks, where l is total number of overlapping image blocks. 

Assuming that the matrix can extract image blocks 
from one image, so HR image blocks can be expressed as: 

. According to the observation model (1), the primary 
task of super resolution (SR) is to solve sparse coding  of 

 on dictionary ,which is defined as: 

           
(2) 

Where the Lagrange multiplier  is used to balance the 
tradeoff between fitting data perfectly and employing one 
sparse solution, and   is the sparsity-inducing term. HR 
image can be reconstructed by the following formula (3), 
and the reconstructed image can be obtained. 

         
(3) 

Where is an over-complete dictionary, 
most of sparse coding vector  are zero or close to zero. The 
purpose of introduction of symbol  is that the 
representation of  is more convenient than that of 

. 

The choice of dictionary is very important for sparse 
representation model. There are two main types of dictionaries 
for selection: analytical dictionaries and learning dictionaries.  

B. Traditional Patch based Sparse Representation 
Recently, sparse representation based model in image 

processing has been proved to be a promising model[7], which 
assumes that in some areas, natural images are sparse, and can 
be made by a group of bases or atoms of dictionary. In 
literatures, the basic unit of image sparse representation is 
image block. Let and ( ) denote 
respectively original image, image block with the size of 

, where  represents the location of image 
blocks, is the size of image,  is the size of image block, 
and is the total number of image blocks. Image blocks can 
be obtained by the following formula (4): 

                 (4) 

Where  is an operator extracting image blocks  
from image , transpose operation of  is denoted as 

, which can restore image block  to the position of 
image , the rest of which are padded with zeros in the 
reconstruction of HR image. Since there are usually 
overlapping parts between image blocks, reconstructed image 
from image blocks  can be described as follows: 

              (5) 
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of two vectors, vector is the same size as vector , its 
value is 1, equation (5) is a kind of abstract mathematics for 
the average of all the overlapping image blocks. 

Given one dictionary ,where is the total number 
of atoms in dictionary , each image block can be coded 
sparsely as  by using sparse coding algorithm, the 
majority of coefficients in vector  are zero or close to zero. 
The whole image can be represented sparsely by a set of 
sparse encoding coefficients. In fact,  can be solved by the 
following equation (6): 

            
(6) 

Where,  is one constant, is 0 or 1. If , the 
sparsity is represented by the norm  of ,which is the 
number of non-zero elements in the vector . However, the 
norm  optimization problem is one non convex and NP 
hard problem, which can be solved by using the greedy 
algorithm  such as orthogonal matching pursuit (OMP) 
algorithm [11].If ,the norm optimization problem is 
similar to the convex norm , which can be solved by the 
large scale tool, which is recently proposed[8]. 

Similar to equation (5), the formula of reconstructed image 
 from sparse coding of image  is as follows: 

        (7) 

Where are concatenated by all , i.e. 

.  

C. Patch-based Sparse Representation Single Image Super 
Resolution 

According to the degradation equation (1), the 
reconstruction formula using traditional patch-based sparse 
representation single image super-resolution is as follows: 

          
(8) 

Where  is regularization parameter,  is 0 or 1. The 
reconstructed image  using can be represented as: 

. 
The core of sparse representation model is the choice of 

dictionary. In other words, finding the best domain to sparsify 
one given image is very important. A redundant dictionary is 
usually learned from a set of training image blocks 

, where  is the number of training image 
blocks. The goal of dictionary learning is to optimize 
dictionary  and representation coefficient matrix 

together to let , where 
and  is 0 or 1. Dictionary learning can be 

expressed in mathematical formula (9): 

       
(9) 

Obviously, even when  is 1, the solution of 
minimization problem of the above formula (9) is large-scale 
and highly non-convex. In order to solve the problem easy, 
some approximation methods, such as DGSDL [6], are 
proposed to optimize alternately the dictionary  and the 
representation coefficient matrix , and improve results of 
image processing. 

III. GROUP-BASED SPARSE REPRESENTATION VIA GAUSSIAN 
SINGLE IMAGE SUPER RESOLUTION 

A. Basic Idea 
This is a tendency to using sparse regularization based 

super-resolution to reconstruct one single image, which not 
only makes full use of the sparsity of image, but also can 
improve further the effect of super resolution reconstruction. 
But the traditional sparse regularization based single image 
super-resolution reconstruction is patch-based sparse 
regularization, there exist some shortcomings as follows:  

(1) Large-scale optimization problems must be solved in 
highly redundant dictionary learning process. In order to make 
the solution more simple and convenient, researchers put 
forward some approximation methods, such as DGSDL[6], to 
optimize alternately the dictionary and sparse coding , 
and get good results in image processing. However, it is 
inevitable to require  highly computational complexity by 
using these approximation methods to learn redundant 
dictionaries. 

(2)Researchers also noted that, in the dictionary learning 
and sparse encoding stage, each patch in the image is actually 
considered separately, ignoring the relationship between 
patches with similar nature, such as self-similarity[7], 
resulting in inaccurate sparse encoding coefficiences. 

In order to solve these two problems, the literature[5] 
restored the image using group-based sparse regularization 
(GSR)model  instead of patch-based sparse regularization 
model, the purpose of which is to use local sparse and 
nonlocal self-similarity of the image in an unified framework. 
However, GSR used the nearest neighbor sparse 
reconstruction to capture the local structure information of the 
image, and effectively improved deblurring effect of the image. 
But, GSR still has some shortcomings, and use Euclidean 
distance classifying patches with local similarity into one 
group. Euclidean distance only can get difference of pixels 
between two patches, which lacked consideration of image 
space, and is very sensitive to the deformation of patches. So, 
if patches exist the distortion or Euclidean distance between 
the two patches is too large, the result of patches grouping are 
inaccuracy. 

At present, newly proposed Gauss kernel distance metric 
calculation method can obtain the nonlinear information 
between data sets, measuring the distance or similar between 
samples, and making full use of the image spatial relationships 
to effectively capture the similarity between images.Compared 
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with other nonlinear distance measure algorithms, the 
computation complexity of the Gaussian kernel distance 
metric is small and the performance of which is more stable 
[12]. 

To this end, this paper proposes GSR-based single image 
super-resolution with Gaussian algorithm in the base of the 
existing GSR using the Gaussian kernel distance to measure 
the distance between patches. Our approach contains three 
phases as follows: 

(1) The first stage obtains Gaussian distance matrix between 
patches employing Gaussian distance, and then classify 
patches into groups by Gaussian distance matrix. 

(2)The second stage uses effectively adaptive dictionary 
learning methods for learning patches in each group, and gets 
their dictionary atoms which are employed to encode sparsely 
patches in each group. 

(3)Finally, the entire image is reconstructed by super 
resolution in the domain of the group. 

B. Algorithm Steps 
Let denotes the original high resolution image, 

which is processed by fuzzy and down sampling operation to 
obtain the degraded image with low resolution as input 
data. 

The specific implementation process of algorithm is as 
follows: 

(1) Segmenting the image into groups with similar structure, 
as shown in figure 1. First, the low resolution image  with 
the size of is divided into overlapping patches, the size 
of each patch is , which is described as a vector 

. Image patches of a training window 
are denoted into a set of , the number of elements 

in which is denoted as , shown as the blue box in Fig.1. For 
each patch , as shown as the red box in Figure 1,  
adjacent patches of  are selected as the Gaussian kernel 
distance measure formula (10): 

             
(10) 

where , is the width of 

the Gaussian kernel distance, which is equal to the mean value 
of the Euclidean distance among image patches in a training 
window .  adjacent patches of  are denoted into 
a set as .  patches with similar structures in  are 

represented as a matrix with the size of , and are 
composed of a group, denoted as ,each patch in 

is formed as a column of ,that is, 

.Constructing a group from the 

image is defined as the formula (11): 

                                  (11) 

Where  is an operator of forming the group 

from the image . The of transpose can return 

th group to the position of the image , and any else 
except the position  is all with zero padding. 

Fig. 1. Illustrations for classifying patches into one group 

A complete image can be recovered from by 

averaging all the groups, as shown in the formula (12). 

            
(12) 

Where, is on behalf of element division in the 
corresponding position of two vectors, every element value of 
matrix  with the size of  is 1. 

(2) Learning the adaptive dictionary for  
group by singular value decomposition (SVD). We utilize 
SVD to learn an adaptive dictionary for group , and obtain 

the estimated value of , as shown in the formula (13). 

         (13) 

Where  are respectively left and right singular 

value vectors of singular values in 
,  

is a diagonal 

matrix whose principal diagonal element is singular values, 
is the number of singular values which are denoted as  

. are respectively 

column elements of .The atoms  in dictionary 

 of group are defined as shown in the formula (14). 

            (14) 

Where ， . Finally, the adaptive learning 

dictionary of the group  is shown in the formula 

(15). 

            (15) 
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th group. The sparse encoding of the th group can 

be represented by a formula (16). 

       (16) 

Where is the sparse regularization parameter. Since the 
optimization problem is non-convex, and NP hard problem. 
 Optimization is usually used to approximate the  

optimization problem. From a technical point of view, the 
optimization problem is equivalent to the  optimization 
problem under certain constraints. In this paper, the SBI 
algorithm [9] is used to solve the optimization problem. The 
objective function of reconstructing the th group is shown in 
the formula (17). 

        (17) 

SBI algorithm divides the solution of objective function into 
two sub problems, one is the solution of , the other is the 

solution of . Iterative solution algorithm steps are as 

shown in Algorithm1. 

Algorithm 1 
① Setting initial value of variables and illustrating 

parameters 
， ，  is the number of 

overlapping pixels between patches，  is the number of 
patches in one group, 

, 

where，  is a threshold，  is one hard-threshold 

operator， is on behalf of the corresponding elements 

multiplication in two vectors， is a vector with the 

same size as vector , the corresponding position on the 

vector  is set as 1, otherwise as 0 when the absolute 

value of which in is greater than the threshold . 

②Repeat 

③
       

(18) 

④ (19) 

⑤  

⑥  

⑦ Until the maximum number of iterations reached or the 
iterative stopping condition satisfied. 

Equation (18) is a convex quadratic function, whose 
solution is as follow as the formula (20). 

       (20) 

Where is the unit matrix. 

The solution of the equation (19) can be solved by the 
formula (21). 

               
(21) 

(4) Restoring and reconstructing the th group of patches 
. The rest  group of patches are employing the 

same technology for super resolution reconstruction. A 

complete image can be recovered from  through 

averaging patches of all the groups, as shown in the formula 
(22). 

                 (22) 

Which is similar to the formula (11). Where is on behalf 
of element division in the corresponding position of two 
vectors, every element value of matrix  with the size of 

is 1.Finally, the reconstructed image is the high 
resolution image . 

IV. EXPERIMENTAL RESULT AND ANALYSIS 

A. Experimental Dataset 
Test images used in the experiment, include butterfly, 

vessels, flowers, leaves, raccoon, buildings, goldfish, house, 
Lena, peppers, windows, parrot, girl, bicycle, hat, coast guard, 
bridge, tiger, zebra, foreman and so on, some of which are 
shown in Fig. 2. For color images, single image 
super-resolution reconstruction is applied only to the 
luminance component. 

B. Experimental Settings 
In this paper, experimental parameters are set as follows: 

group size is , patch size is 64, the number of 
image patches in one group is 60, overlapping pixels between 
adjacent patches are 4 pixels. The size of training window 

 constructing one group is setting to . All test 
images are first blurred by a 25×25 Gaussian filter with 
standard deviation ,and then downsampled by a 
decimation factor of  to produce the corresponding LR 
images. All experiments are conducted in MATLAB 7.11.0 
software on a desktop PC with 2.60GHz Dual-Core CPU and 
8.25G memory. 

All experiments are repeated one hundred times and the 
average PSNR and SSIM values are taken as the final PSNR 
and SSIM. 
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Fig. 2. Some test images in experiment 
 

C. Experimental Result and Analysis 
In order to estimate exactly the performance of GSRGSiSR 

algorithm, the effect of threshold parameter  on 
GSRGSiSR is firstly discussed and then experimental result 
and detail analysis are given respectively on the different 
number of nearest neighbors for MoE [13], LRT_SR[3] and 
GSRGSiSR algorithms. 

1) Threshold parameter selection 
In order to obtain the optimal value of threshold parameter 
, 6 test images are selects, and on which the different 

threshold parameter are selected for the experiment,  is 
set to 0.005, and  is set to 0.7532. Threshold parameter  
increases from 10 to 60 with the increment 10 and 
corresponding PSNR and SSIM are calculated. Concrete 
experimental results are showed in Table 1 and Fig.3. 

Table1PSNR and SSIM results of reconstructed images by different 
values of δ 

Valu
es of 

 

Measu
res 

Images 
Boat
s 

Build
ing 

Bike Leaf Wind
ow 

Parr
ot 

Avg. 

=10 
PSNR 30.01 25.45 24.2

2 
38.6
9 

29.86 31.0
3 

29.8
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SSIM 0.882
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0.875
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01 

0.95
53 

0.885
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0.93
41 

0.89
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SSIM 0.879
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0.92
11 

0.87
97 

=30 
PSNR 29.92 25.06 23.8

6 
38.6
3 

29.03 29.8
2 

29.3
9 

SSIM 0.878
8 

0.852
1 

0.80
52 

0.95
53 

0.861
1 

0.92
02 

0.87
88 

=40 
PSNR 29.92 25.04 23.8
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38.6
3 

29.03 29.7
9 

29.3
7 

SSIM 0.878
7 

0.851
7 

0.80
40 

0.95
53 

0.861
0 

0.91
98 

0.87
84 

=50 
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3 

29.02 29.7
9 

29.3
7 

SSIM 0.878
7 

0.851
5 

0.80
32 

0.95
53 

0.861
0 

0.91
98 

0.87
83 

=60 
PSNR 29.91 25.03 23.7
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38.6
3 

29.02 29.7
8 

29.3
6 

SSIM 0.876
7 

0.851
4 

0.80
29 

0.95
53 

0.860
9 

0.91
98 

0.87
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             (e)                  (f) 

Fig.3.The reconstructed results by different threshold value  on 
"Building".(a) ＝60(PSNR=25.03,SSIM=0.8514). (b) ＝

50(PSNR=25.04,SSIM=0.8515). (c) ＝
40(PSNR=25.04,SSIM=0.8517). (d) ＝
30(PSNR=25.06,SSIM=0.8521). (e) ＝

20(PSNR=25.10,SSIM=0.8531).  (f) ＝
10(PSNR=25.45,SSIM=0.8754). 

 
As can be seen from Table 1, with increment in threshold 

parameter , the values of PSNR and SSIM fluctuation, and 
even decrease. The values of PSNR and SSIM reach most high 
when  is set to 10. From Fig.3., we can see that the edge of 
reconstructed image becomes clearer with decreasing 
threshold parameter . When threshold parameter is set to 
60, 50, 40, 30 respectively, the edge contour of reconstructed 
image changes little. Therefore, considering both objective 
and subjective effects, we adopt 10 as the value of threshold 
parameter δ. 

2) Effect of the size of patch every group 
In order to test the effect of patch size on the quality of 

reconstructed image in every group, we conduct experiments 
on different patch sizes, namely 3*3, 5*5, 7*7 and 9*9. The 
threshold parameter  is set to 10. Experimental results are 
shown in Table 2 and Fig.4.  

 

Table 2. PSNR and SSIM results of reconstructed images by 
different patch sizes of one group 

Images Measures different patch sizes of one group 

3*3 5*5 7*7 9*9 
Boats PSNR 27.79 30.01 28.64 28.24 

SSIM 0.8581 0.8822 0.8817 0.8803 

Buildin
g 

PSNR 24.84 25.45 25.24 25.23 

SSIM 0.8523 0.8754 0.8551 0.8550 

Bike PSNR 23.98 24.22 24.11 23.90 

SSIM 0.8141 0.8201 0.8141 0.8135 

Leaf PSNR 38.06 38.69 38.69 38.64 

SSIM 0.9536 0.9553 0.9548 0.9543 
Window PSNR 28.73 29.86 29.16 29.13 

SSIM 0.8643 0.8851 0.8650 0.8647 

Parrot PSNR 27.13 31.03 26.69 26.41 

SSIM 0.9235 0.9341 0.9232 0.9008 

Avg. PSNR 28.42 29.88 28.76 28.59 
SSIM 0.8777 0.892 0.8823 0.8781 

 
As can be seen from Table 2 and Fig.4., with increment in 

patch sizes, the values of PSNR and SSIM fluctuation, and 
even decrease. The values of PSNR and SSIM reach most high 
when patch size is set to 5*5. Therefore, considering both 
objective and subjective effects, we adopt 5*5 as the value of 
patch sizes. 

 

 
(a)                     (b) 

 
(c)                    (d) 

 
(e) 

Fig.4. The reconstructed results by different patch sizes on 
"Building". (a)3*3 (PSNR=24.84, SSIM=0.8523) (b)5*5 

δ
δ δ

δ
δ
δ
δ

δ

δ

δ δ

δ
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(PSNR=25.45, SSIM=0.8754) (c)7*7 (PSNR=25.24,SSIM=0.8551) 
(d)9*9 (PSNR=25.23,SSIM=0.8550)(e) LR image 

 
3) Effect of the size of training window every group 
In order to test the effect of training window size on the 

quality of reconstructed image, we conduct experiments on 
different training window sizes, namely 19, 20, 21 and 22. The 
threshold parameter and patch size are set to 10 and 5*5 
respectively. Experimental results are shown in Table 3 and 
Fig.5. 

Table 3 PSNR and SSIM results of reconstructed images by the 
different size of training window of one group 

Images Measures the different size of training window of 
one group 
19 20 21 22 

Boats PSNR 29.96 30.01 29.95 29.94 

SSIM 0.8821 0.8822 0.8805 0.8805 

Buildin
g 

PSNR 25.18 25.45 25.22 25.21 

SSIM 0.8549 0.8754 0.8562 0.8558 

Bike PSNR 24.09 24.22 24.09 24.08 

SSIM 0.8143 0.8201 0.8141 0.8139 

Leaf PSNR 38.67 38.69 38.68 38.68 

SSIM 0.9553 0.9553 0.9554 0.9554 

Window PSNR 29.13 29.86 29.13 29.13 

SSIM 0.8641 0.8851 0.8645 0.8647 

Parrot PSNR 29.98 31.03 29.97 29.95 

SSIM 0.9237 0.9341 0.9232 0.9232 

Avg. PSNR 29.5 29.88 29.51 29.5 
SSIM 0.8824 0.892 0.8823 0.8823 

 

 
(a)                     (b) 

 

(c)                   (d) 

 
(e) 

Fig.5. The reconstructed results by different training window 
sizes on "Window". (a)19 (PSNR=29.13, SSIM=0.8641) (b)20 

(PSNR=29.86, SSIM=0.8651) (c)21 (PSNR=29.13, SSIM=0.8645) 
(d)22(PSNR=29.13,SSIM=0.8647)(e) LR image 

As can be seen from Table 3 and Fig.5., with increment in 
training window sizes, the values of PSNR and SSIM 
fluctuation, and even decrease. The values of PSNR and SSIM 
reach most high when training window size is set to 20. 
Therefore, considering both objective and subjective effects, 
we adopt 20 as the value of training window size. 

 
4)Effect of the different number of patches every group 
In order to test the effect of different number of patches 

every group on the quality of reconstructed image, we conduct 
experiments on different number of patches every group, 
namely 70, 80, 90 and 100. The threshold parameter , patch 
size and training window size are set to 10, 5*5 and 20 
respectively. Experimental results are shown in Table 4 and 
Fig.6. 

 
Table 4 PSNR and SSIM results of reconstructed images by the 

different number of patches every group 

Images Measures the different number of patches every 
group 
70 80 90 100 

Boats PSNR 29.86 29.92 30.01 29.98 

SSIM 0.8791 0.8800 0.8822 0.8807 

Buildin
g 

PSNR 25.19 25.25 25.45 25.27 

SSIM 0.8559 0.8562 0.8754 0.8570 

Bike PSNR 24.09 24.12 24.22 24.23 

SSIM 0.8141 0.8152 0.8201 0.8221 

Leaf PSNR 38.67 38.68 38.71 38.67 

SSIM 0.9553 0.9556 0.9558 0.9553 

Window PSNR 29.10 29.28 29.86 29.25 

SSIM 0.8641 0.8712 0.8851 0.8688 

Parrot PSNR 29.85 29.98 31.03 30.01 

SSIM 0.9218 0.9232 0.9341 0.9235 

Avg. PSNR 29.46 29.54 29.88 29.57 
SSIM 0.8817 0.8836 0.8921 0.8846 

 

δ

δ
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(a)                         (b) 

 
(c)                           (d) 

 
(e) 

Fig.6. The reconstructed results by different number of patches every 
group on " Parrot". (a) 70 (PSNR=29.85, SSIM=0.9218) (b) 80 
(PSNR=29.98,SSIM=0.9232) (c) 90 (PSNR=31.03,SSIM=0.9341) (d) 
100(PSNR=30.01,SSIM=0.9235) (e) LR image. 

As can be seen from Table 4 and Fig.6., with increment in 
the number of patches every group, the values of PSNR and 
SSIM fluctuation, and even decrease. The values of PSNR and 
SSIM reach most high when the number of patches every 
group is set to 90. Therefore, considering both objective and 
subjective effects, we adopt 90 as the number of patches every 
group. 

5) Reconstructed image results by different methods 
In order to display the visual effects of different methods 

reconstructing images, experimental results on reconstructed 
images and segmented local regions are shown in Table 5 and 
Fig.7. 

 
Table 5PSNR and SSIM results of reconstructed images by different 

methods 

Imag
es 

Meas
ures 

Methods 

Bic
ubic 

SC
SR 

Zey
de's 

NA
RM 

LRT
_SR 

Mo
E  

Prop
osed 

Boat PSN 27.8 29. 29.2 27.5 29.4 29.9 30.01 

s R 7 25 4 3 5 5 

SSI
M 

0.81
42 

0.8
542 

0.85
30 

0.78
24 

0.86
06 

0.87
17 

0.882
2 

Starf
ish 

PSN
R 

26.5
3 

27.
82 

27.7
4 

26.0
4 

28.4
9 

28.5
2 

28.92 

SSI
M 

0.77
29 

0.8
237 

0.81
82 

0.73
11 

0.84
02 

0.85
62 

0.883
5 

Hous
e 

PSN
R 

24.7
5 

24.
85 

25.5
5 

25.8
2 

26.1
7 

26.3
7 

26.61 

SSI
M 

0.75
31 

0.7
881 

0.87
57 

0.87
85 

0.88
10 

0.89
99 

0.906
4 

Lena PSN
R 

29.4
8 

30.
88 

30.7
6 

29.3
8 

31.3
6 

31.5
1 

31.48 

SSI
M 

0.78
57 

0.8
201 

0.81
71 

0.76
15 

0.83
06 

0.91
3 

0.927
7 

Wind
ow 

PSN
R 

27.1
5 

28.
48 

28.3
5 

26.6
9 

28.7
8 

29.1
8 

29.86 

SSI
M 

0.76
44 

0.8
174 

0.81
20 

0.73
03 

0.82
79 

0.84
13 

0.885
1 

Parro
t 

PSN
R 

27.4
5 

29.
11 

28.9
9 

27.5
7 

29.5
3 

29.8
1 

31.03 

SSI
M 

0.85
28 

0.8
826 

0.87
90 

0.83
37 

0.88
68 

0.89
32 

0.934
1 

Butte
rfly 

PSN
R 

23.8
5 

26.
31 

26.0
6 

24.7
9 

27.1
4 

26.8
7 

26.99 

SSI
M 

0.79
85 

0.8
748 

0.86
51 

0.83
7 

0.89
34 

0.88
30 

0.914
684 

Flow
er 

PSN
R 

34.2
1 

36.
24 

36.3
5 

32.4
1 

36.6
4 

36.9
4 

36.67 

SSI
M 

0.90
37 

0.9
181 

0.91
88 

0.86
09 

0.92
21 

0.93
65 

0.928
3 

Plant
s 

PSN
R 

30.7
5 

32.
58 

32.3
2 

30.3
6 

32.9
9 

33.0
5 

33.10 

SSI
M 

0.84
63 

0.8
547 

0.85
36 

0.80
39 

0.86
09 

0.91
98 

0.924
7 

Leaf PSN
R 

36.8
8 

38.
04 

38.1
8 

35.3
1 

38.4
0 

38.5
7 

38.69 

SSI
M 

0.88
42 

0.8
940 

0.89
42 

0.84
94 

0.89
81 

0.91
13 

0.955
3 

Girl PSN
R 

33.0
1 

33.
90 

33.8
9 

30.4
8 

34.0
3 

33.8
0 

35.24 

SSI
M 

0.76
06 

0.7
836 

0.78
14 

0.59
55 

0.78
55 

0.75
4 

0.880
2 

Bike PSN
R 

22.6
3 

23.
92 

23.7
8 

22.7
4 

24.2
8 

24.1
7 

24.22 

SSI
M 

0.67
46 

0.7
561 

0.74
61 

0.65
64 

0.77
21 

0.79
21 

0.820
1 

Racc
oon 

PSN
R 

28.3
7 

28.
91 

28.9
2 

27.5
9 

29.1
6 

29.6
1 

29.92 

SSI
M 

0.70
01 

0.7
402 

0.73
51 

0.62
51 

0.74
18 

0.80
89 

0.824
7 

Leav
es 

PSN
R 

23.3
1 

25.
64 

25.5
5 

24.1
1 

26.4
4 

26.3
4 

26.18 

SSI
M 

0.79
98 

0.8
818 

0.87
57 

0.83
31 

0.90
18 

0.90
02 

0.894
3 
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Buil
ding 

PSN
R 

23.5
3 

24.
36 

24.3
3 

23.6
6 

24.8
2 

25.0
6 

25.45 

SSI
M 

0.68
42 

0.7
445 

0.73
70 

0.67
22 

0.76
11 

0.81
11 

0.875
4 

Pepp
ers 

PSN
R 

29.4
3 

31.
91 

31.7
5 

29.6
0 

32.2
3 

32.5
4 

31.19 

SSI
M 

0.84
82 

0.8
616 

0.86
67 

0.82
54 

0.86
91 

0.90
6 

0.896
0 

Avg. PSN
R 

28.0
8 

29.
51 

29.4
9 

27.7
6 

29.9
9 

30.1
4 

30.35 

SSI
M 

0.79
02 

0.8
31 

0.83
3 

0.76
73 

0.84
58 

0.86
86 

0.895
793 

 
(a) LR image                   (b) BI 

 

(c)  SCSR                       (d) Zeyde’s 

 

(e)  NARM                    (f) LRT_SR 

 
(g)   MoE             (h)The proposed 

 

(i) Original image 

Fig.7. Comparison with results reconstructing on "house" image by 
different methods. (a)LR image (b) BI (PSNR = 24.75, SSIM = 
0.7531). (c) SCSR [4] (PSNR =  24.85, SSIM = 0.7881). (d) 
Zeyde’s [14] (PSNR = 25.55, SSIM = 0.8757). (e) NARM [1] (PSNR 
= 25.82, SSIM = 0.8785). (f) LRT_SR[3] (PSNR =26.17, SSIM = 
0.8810). (g) MoE[13](PSNR = 26.37, SSIM = 0.8999).  (h) The 
proposed (PSNR = 26.61, SSIM = 0.9064) (i) Original image 

As can be seen from Fig.7, BI method has lost some 
important details of image, and the edge of which is blur. 
SCSR method recovers more details, but edges or details in 
the reconstructed image by which have some jaggy and 
ringing artifacts. Zeyde's method can suppress jaggy artifacts 
and sharp the edges, but it produces obvious ringing effects 
and leads to smooth reconstructed image. Although NARM 
method reconstructs the image relatively clear, the edges of 
which have obvious ringing effects. LRT_SR method can 
recover high-frequency details, and the contour edge of 
reconstructed image is quite clear. We can see that although 
the proposed method and MoE method can not only 
reconstruct fine details but also preserve correct edges.Also, 
an interesting observation is that by averaging the value of 
PSNR and SSIM of the super-resolved images of those two 
methods we can get a better result with average PSNR 30.35 
dB and SSIM 89.58%, indicating that our method is somewhat 
complementary to MoE. 

V. CONCLUSION 
Failing to capture nonlinear nonlocal structure information 

and ignoring prior information in selecting the m nearest 
neighbors of every image patch as one group are main 
problems of existing group sparse representation algorithms. 
Therefore, Single-image Super Resolution based on Group 
Sparse Representation via GAUSSIAN (GSRGSiSR) is 
proposed on the basic of existing Group Sparse Representation 
in the paper. GSRGSiSR makes use of Gaussian kernel 
distances between image patches for analysis on similarity 
among them with these distances as group reconstruction, 
creating the group set of every image. Then GSRGSiSR 
designs an effective self-adaptive dictionary learning method 
for each group with low complexity, rather than dictionary 
learning from natural images, which achieves sparse 
representation of the image in the domain of group and gets 
their dictionary atoms which are employed to encode sparsely 
patches in each group. Finally, the entire image is 
reconstructed by super resolution in the domain of the group. 
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GSRGSiSR not only fuses performance of group sparse 
representation but also preserves nonlinear nonlocal 
self-similarity structure in the processing of single image 
super resolution. Experimental results on natural images 
demonstrate that the proposed GSRGSiSR method can get 
better PSNR and SSIM. Future work includes the extensions 
of GSR via Gaussian on a variety of applications, such as 
image deblurring and video restoration and so on. 
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